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§0 Preliminary
Let Mn be a complex n-dimensional Kähler manifold

with a Kähler metric

ds2 =

n∑

α,β=1

gαβ̄dzαdz̄β.

We have the following terminologies for its curvatures:

Curvature tensor:

Rαβ̄µν̄ = − ∂2gαβ̄

∂zµ∂z̄ν
+

n∑

λ,σ=1

gλσ̄∂gλβ̄

∂zµ

∂gασ̄

∂z̄ν

(
= Rm( ∂

∂zα , ∂
∂z̄β ,

∂
∂zµ ,

∂
∂z̄ν )

)

Ricci curvature:

Rαβ̄ =

n∑
µ,ν=1

gµν̄Rαβ̄µν̄ = − ∂2

∂zα∂z̄β
(log det gµν̄)

(
= Ric( ∂

∂zα , ∂
∂z̄β )

)

Scalar curvature:

R =

n∑

α,β=1

gαβ̄Rαβ̄
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Bisectional curvature:

Rαᾱββ̄

(
= Rm( ∂

∂zα , ∂
∂z̄α , ∂

∂zβ ,
∂

∂z̄β )
)

Choose an orthonormal basis e1, · · · , e2n with Jeα =

en+α for α = 1, · · · , n, where J is the compatible almost

complex structure of Mn.

Set uα = 1√
2
(eα−

√−1Jeα), α = 1, · · · , n then {uα}
is a unitary basis.

• The bisectional curvature is

Rm(uα, ūα, uβ, ūβ) = Rm(eα, eβ, eβ, eα)+Rm(eα, Jeβ, Jeβ, eα)

as the sum of two Riemannian sectional curvatures.

• The Ricci curvature is

Ric(uα, ūα) =

n∑

β=1

Rm(uα, ūα, uβ, ūβ).
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§1 Motivation
The classical uniformization theorem says that a sim-

ply connected Riemann surface is biholomorphic to S2

(Riemann sphere), or C, or D (unit disc).

• It gives the characterization for the standard complex

structures of one-dimensional Kähler manifolds.

• There is a vast variety of biholomorphically distinct

complex structures on R2n for n > 1.

Thus, in order to characterize the standard complex

structures for higher dimensional Kähler manifolds, one

must impose more restrictions on the manifolds.

From the point of view of differential geometry, one

consequence of uniformization theorem is that

A positively curved compact or noncompact

Riemann surface must be biholomorphic to

the Riemann sphere S2 or the complex line C
respectively.

Naturally, one would ask whether there is similar char-

acterization for higher dimensional complete Kähler man-

ifolds with positive ”curvature”.
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Higher dimensional uniformization problems

• Frankel conjecture:

Kähler manifold Mn, compact, bisect> 0

=⇒ Mn
biholo.∼= CP n.

• Yau conjecture:

Kähler manifold Mn, complete noncompact, bisect> 0

=⇒ Mn
biholo.∼= Cn.

• A weaker version (Greene-Wu-Yau):

Kähler manifold Mn, complete noncompact, sect> 0

=⇒ Mn
biholo.∼= Cn.

The Frankel conjecture was completely resolved by

Mori, Siu-Yau in 1979. And the generalized Frankel con-

jecture (with bisect≥ 0) was also completely resolved by

Mok in 1986. Thus in the rest of this talk, we will take

the attention to Yau conjecture or its weak version for

complete noncompact Kähler manifolds.
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§2 Geometric Properties
Consider complex n-dimensional Kähler manifold (Mn,

gαβ̄) with nonnegative bisectional curvature.

Volume Growth

Recall: for a (real) m-dimensional Riemannian man-

ifold Mm with Ric(Mm) ≥ 0

• (Bishop) V ol(B(x0, r)) ≤ ωmrm, ∀r ≥ 0

where ωm is the volume of unit ball of Rm.

• (Calabi, Yau) V ol(B(x0, r)) ≥ c(x0)r, ∀r ≥ 1

where c(x0) is a positive constant.

Example: Let Mm = X × R, where X is a compact

Riemannian manifold with Ric(X) ≥ 0. Then

V ol(B(x0, r)) ≤ Const. · r, as r large.

This shows that the Calabi-Yau’s lower bound estimate

is sharp.

Proposition (Chen-Zhu, QJPAM (2005))

Complex n-dimensional Kähler manifold Mn, bisect≥
0 everywhere, and bisect> 0 at least one point

=⇒ V ol(B(x0, r)) ≥ c(x0)r
n, ∀r ≥ 1,
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where c(x0) is a positive constant.

Remarks

(1) The assumption that ”bisect> 0 at least one

point” is necessary.

e.g.

Mn−1
1 = CP n−1, andM2 = S1×R, then Mn = Mn−1

1 ×
M2 has nonnegative bisectional curvature and its volume

growth satisfies

V ol(B(x0, r)) ≤ const. · r, as r large.

(2) One can not expect ”Riemannian manifold Mm,

sect> 0 =⇒ V ol(B(x0, r)) ≥ c(x0)r
m
2 , ∀r ≥ 1”.

(3) Klemback, Cao constructed some complete Kähler

metrics on Cn which have



positive bisectional curvature

V ol(B(x0, r)) = const. · rn, as r → +∞
|Rm(x)| = O(1

r), as r = d(x, x0) → +∞
In particular, this shows that our volume estimate is

sharp.
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Curvature decay

Recall: Bonnet-Myres theorem says that

Riemannian manifold Mm, Ric(Mm) ≥ δ > 0

⇒ Mm is compact

In other words: Any complete noncompact Riema-

niann manifold Mm with Ric(Mm) ≥ 0 must have

inf{|Ric(x)| | x ∈ B(x0, r)} → 0, as r → +∞

The following proposition gives a quantitative version

of Bonnet-Myres theorem.

Proposition (Chen-Zhu, QJPAM (2005))

Kähler manifold Mn, bisect> 0

⇒ 1

V ol(B(x0, r))

∫

B(x0,r)

R(x)dx ≤ C(x0)

1 + r
, ∀r ≥ 0.

Remarks.

(1) The above Klemback-Cao examples show that this

linear decay estimate for curvature is sharp.

(2) The assumption that ”bisect> 0” is somewhat nec-

essary, e.g. CP k × Cn−k has (positive) constant scalar

curvature.
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§3 Approach via Elliptic Equations
The first result for the uniformization conjecture is the

following isometrically embedding theorem.

Theorem (Mok-Siu-Yau, Compositio Math.(1981))

Kähler manifold Mn, n ≥ 2, complete noncompact,

bisect≥0 and

(i) V ol(B(x0, r)) ≥ C1r
2n, ∀r ≥ 0

(ii) R(x) ≤ C2
(1+d(x,x0))2+ε , on Mn, (ε > 0)

⇒ Mn
isom.∼=
biholo.

Cn with the flat metric.

Ideas of proof

Try to solve the Poincaré-Lelong equation

√−1∂∂̄u = Ric on Mn.

This is an overdeterminate system. They first consid-

ered the following Poisson equation

4u = R on Mn.

• Since the Green function G(x, x0) ≈ d(x,x0)
2

V ol(B(x0,d(x,x0)))
≈

Const.d(x, x0)
2−2n
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the fasten quadratic curvature decay |R(x)| = O( 1
d(x,x0)2+ε)

⇒ u(x) ≈
∫

G(y, x)R(y)dy bounded

• (Bochner type trick)

4‖√−1∂∂̄u−Ric‖2 ≥ 0

⇒ the function u solve the Poincaré-Lelong equation
√−1∂∂̄u = Ric ≥ 0

• Establish a Liouville type theorem for the bounded

plurisubharmonic function

i.e. u(x) ≡ Const. on Mn

Roughly says:




• use the function u as weight in L2-estimates of

∂̄-operator to get a holomorphic function f which is

nontrivial, bounded and
∫ |f |e−u < +∞,

• By Yau’s Liouville theorem, one has f ≡ const.

A contradiction!

#
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From the above argument, one can see:
{

R ≤ C
(1+d(x,x0))2+ε ⇒ u is bounded,

R ≤ C
(1+d(x,x0))2

⇒ u is of logarithmic growth.

Thus in the quadratic decay case ”R ≤ C
(1+d(x,x0))2

” one

can use the solution u of the Poincaré-Lelong equation as

weight in L2-theory of ∂̄-operator to obtain a holomor-

phic function of polynomial growth.

Theorem (Mok, Bull Soc. Math. France (1984))

Kähler manifold Mn, complete noncompact, bisect>

0 and

(i) V ol(B(x0, r)) ≥ C1r
2n, ∀r ≥ 0,

(ii)′ R(x) ≤ C2
(1+d(x,x0))2

, on Mn

⇒ Mn
biholo.∼= an affine algebraic variety.

Moreover if n = 2 and

(iii) sect(Mn)> 0

⇒ M 2
biholo.∼= C2
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Ideas of proof

• Use the quadratic curvature decay assumption to

solve the Poincaré-Lelong equation

√−1∂∂̄u = Ric

to get a strictly plurisubharmonic function of logarithmic

growth.

• By the L2-theory of ∂̄-operator, one can use the func-

tion u as weight to get algebraically independent holo-

morphic functions f1, · · · , fn of polynomial growth.

Denote by

P (Mn) = the algebra of holomorphic functions of

polynomial growth on Mn,

R(Mn) = the quotient field of P (Mn).

• Get a multiplicity estimate for the zero of a holomor-

phic function of polynomial growth. Then by a Poincare-

Siegel type argument,

R(Mn) = a finite extension field of C(f1, · · · , fn)

= C(f1, · · · , fn, g/h)

(by primitive element theorem, for some g, h ∈ P (Mn)).
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• The map F = (f1, · · · , fn, g, h) defines, in an ap-

propriate sense, a birational equivalence between Mn and

some irreducible affine algebraic subvariety of Cn+2.

• Establish uniform estimates on multiplicity and the

number of irreducible components of the zero sets of a

holomorphic function or several holomorphic functions

to desingularize the map F .

• In the case ”n = 2 and Sect(Mn) > 0”, Mok used a

theorem of Ramanujam which states that ”an algebraic

variety of homeomorphic to R4 is biholomorphic to C2”.

#

In views of the above general compactifying scheme of

Mok, one needs to overcome the following two difficulties

to obtain an answer for the uniformization conjecture:

Question 1 How to get the topology of Mn under

the assumption ”bisect> 0”?

• Cheeger-Gromoll-Meyer(1969, 1971):

Riemannian manifold Mm, sect(Mm) > 0

⇒ Mm is diffeomorphic to Rm.

The main tool is the Topogonov triangle comparison the-

orem which holds under the sectional curvature assump-

tion.
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• Do not know whether the Topogonov triangle com-

parison still holds under the holomorphic bisectional as-

sumption.

Question2 Can one remove the curvature decay

assumption?

•Mok-Siu-Yau assumed that the faster than quadratic

curvature decay assumption

R(x) ≤ C2

(1 + d(x, x0))2+ε

• Mok assumed that the quadratic curvature decay

assumption

R(x) ≤ C2

(1 + d(x, x0))2

• Chen-Zhu showed that the linear curvature decay

always holds in average sense

1

V ol(B(x0, r))

∫

B(x0,r)

R(x)dV ≤ C2

(1 + r)
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§4 Parabolic Equations

Let Mn be a complex n-dimensional Kähler manifold

with Kähler metric gαβ̄(x).

The Ricci flow is the following evolution equations
{

∂
∂tgαβ̄(x, t) = −Rαβ̄(x, t), on Mn × [0, T )

gαβ̄(x, 0) = gαβ̄(x), on Mn.

Note that −Rαβ̄(x, t) = ∂2

∂zα∂z̄β (log det(gµν̄)). Thus

the Ricci flow is a parabolic system (of nonlinear Monge-

Ampere type).

• Short time existence (Hamilton, Shi):

If the curvature of the initial metric is bounded, then

the solution of the Ricci flow exists on a short time inter-

val.

• Preserving Kählerity (Hamilton, Shi):

gαβ̄(x, 0) is Kähler ⇒ gαβ̄(x, t) is also Kähler for each

t > 0

•Preserving positive bisectional curvature (Bando,

Mok, Shi):

bisect> 0 at t = 0 ⇒ bisect> 0 for each t > 0
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Thus to study the topological and complex structure

of a complete noncompact Kähler manifold of positive

holomorphic bisectional curvature, we can

replace the Kähler metric by any one of the

evolving metric of the Ricci flow.

In particular, if we can get the long time behaviors of

the solution of the Ricci flow, it will be possible to extract

informations to determine the topological and complex

structure of the given Kähler manifold.

Shi is the first one to use the Ricci flow to approach

the Yau’s conjecture. It is pity that his arguments have

several gaps.
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§5 Approach via Parabolic Equations

Theorem (Chen-Tang-Zhu, J. Diff. Geom. (2004))

Suppose: Kähler surface M 2, 0 <bisect≤ Const.,

and

(i) V ol(B(x0, r)) ≥ C1r
4, ∀r ≥ 0.

Then

M 2
biholo.∼= C2.

Ideas of proof

Step 1. Long Time Behaviors.

Study the long time behaviors of the solution of the

Ricci flow{
∂
∂tgαβ̄(x, t) = −2Rαβ̄(x, t), on M 2 × [0, T )

gαβ̄(x, 0) = the given Kähler metric.

Lemma (Preserving maximal volume growth)

Under the assumption of the theorem, we still have

V olt(Bt(x, r)) ≥ C1r
4,

for all r > 0, x ∈ M 2 and t ∈ [0, T ), where Bt(x, r)is

the geodesic ball of radius r centered at x and V olt is
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the volume taken w.r.t. gαβ̄(·, t).

Let T be the maximal time (i.e., if T < +∞, then

the curvature |Rm(·, t)| become unbounded as t → T ).

According to Hamilton, we classify the solution into fol-

lowing types:

Type I: T < +∞ and sup(T − t)|Rm(x, t)| < +∞
Type II(a): T < +∞ and sup(T − t)|Rm(x, t)| = +∞
Type II(b): T = +∞ and sup t|Rm(x, t)| = +∞
Type III: T = +∞ and sup t|Rm(x, t)| < +∞

To understand the structure of the solution near the max-

imal time T , we rescale the solution around a sequence

points Pj ∈ M 2 and a sequence of time tj → T . Then

any Type I, or Type II(a),(b) limit must be an ancient

solution (i.e. the solution exists on the time interval

(−∞, 0]) with 0 ≤bisect≤ Const.).

By using the dimension reduction argument of Hamil-

ton and a trick of Ivey, we obtained
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Lemma: Any complex two-dimensional ancient solu-

tion, with 0 ≤bisect≤ Const., must have

ν = lim
r→+∞

V olt(Bt(x0, r))

r4
= 0,

for each t.

Remarks:

• Independently, Perelman also obtained this result for

the Ricci flow on Riemannian manifold with nonnegative

curvature operator.

• Most recently, Ni generalized this lemma for all di-

mensions by the combination of an idea of Perelman and

the above linear decay estimate for curvature.

The combination of these two lemmas gives the follow-

ing time decay estimate for curvature.

Time decay estimate: Under the assumption of the

theorem, we have T = +∞ and

|Rm(x, t)| ≤ C

1 + t
, on M 2 × [0, +∞),

for some positive constant C.
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Step 2. Topology

Consider the solution gαβ̄(·, t) of the Ricci flow. By

using the local injectivity radius estimate of Cheng-Li-

Yau (see also Cheeger-Gromov-Taylor),

inj(M, gαβ̄(·, t)) ≥ c0(1 + t)
1
2 , for t ∈ [0, +∞),

where c0 is a positive constant.

•Ric(·, t) ≥ 0 ⇒ Bt(x0,
c0
2 (1+t)

1
2) ⊃ B0(x0,

c0
2 (1+

t)
1
2) (

∵ ∂

∂t
gαβ̄ = −Rαβ̄ ≤ 0

)

• inj(M 2, gαβ̄(·, t)) ≥ c0(1 + t)
1
2

⇒ Bt(x0,
c0

2
(1 + t)

1
2)

diffeo.∼= unit ball

⇒ πp(M
2, x0) = 0, for any p ≥ 1 and

πq(M
2,∞) = 0, for q = 1, 2.

⇒ ( By the resolution of the generalized

Poincare conjecture on four-manifolds by Freedman)

M 2
homeomorphic∼= R4.

Thus we obtain

Proposition. Under the assumption of the theorem,

the manifold M 2 is homeomorphic to R4.
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Step 3. Space decay estimate on curvature

We now consider the question how to get the curva-

ture decay.





•Average Linear Decay: bisect> 0 ⇒
1

V ol(B(x0,r))

∫
B(x0,r)

R(x)dx ≤ C
1+r , ∀r ≥ 0,

•Yau prediction: bisect> 0, maximal volume growth
?⇒ curvature quadratic decay in certain average sense.

Our idea:

• Evolve the metric by the Ricci flow to get a time

decay estimate on curvature,

• Use the time decay estimate to derive a space decay

estimate on curvature.

By definition

−∂α∂̄β log
det(gµν̄(·, t))
det(gµν̄(·, 0))

= Rαβ̄(·, t)−Rαβ̄(·, 0),

after taking trace with the initial metric gαβ̄(·, 0), we get

R(·, 0) = 4oF (·, t) + gαβ̄(·, 0)Rαβ̄(·, t)

where 4o is the Laplacian operator of the initial met-

ric gαβ̄(·, 0), and F (·, t) = det(gµν̄(·, t))/ det(gµν̄(·, 0)).
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Since

|gαβ̄(·, 0)Rαβ̄(·, t)| ≤ |R(·, t)| ≤ Const

1 + t
,

we have
∂F (x, t)

∂t
= −R(x, t)

and then

|F (x, t)| ≤ Const. log(1 + t).

Thus
∫

B0(x0,r)

R(x, 0)

d2
0(x0, x)

dx ≤ Const.

∫

B0(x0,r)

R(x, 0)G0(x0, x)dx

(G0 is a positive Green function w.r.t. gαβ̄(·, 0))

≤ Const.

∫

B0(x0,r)

(4oF (·, t) + (
Const.

1 + t
))G0(x0, x)dx

≤ Const.(log(1 + t) +
r2

t
)

(
G0(x, x0) ≈ Const.

d(x, x0)
2

V ol(B(x0, d(x, x0)))

)
.

Then by choosing t = r2, we have
∫

B0(x0,r)

R(x, 0)

d2
0(x0, x)

≤ Const. log(2 + r), for all r ≥ 0.
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Space decay estimate: Under the assumption of

the theorem, we have
∫

B(x,r)

R(y)

d(x, y)2
dy ≤ Const. · log(2 + r), ∀r ≥ 0,

(
in particular,

1
V ol(B(x0,r))

∫
B(x0,r)

R(x)dx ≤ Const. · log(2+r)
r2 , ∀r ≥ 0

)

Consider the Poincare-Lelong equation
√−1∂∂̄u = Ric.

Recall:

• R(x) ≤ Const./(1+d(x0, x))2+ε ⇒ u is bounded,

•R(x) ≤ Const./(1+d(x0, x))2 ⇒ u is of logarithmic growth.

Fortunately, we can still use the average decay estimate
∫

B(x,r)

R(y)

d(x, y)2
dy ≤ Const. · log(2 + r)

to solve the Poincaré-Lelong equation
√−1∂∂̄u = Ric

to get that u is of logarithmic growth.

Proposition: Under the assumption of the theorem,

we can find a strictly plurisubharmonic function u of

logarithmic growth.
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Step 4. We basically follow the arguments of

Mok.

•Use the strictly plurisubharmonic functions u as weight

in the L2-theory of ∂̄-operator to get algebraically inde-

pendent holomorphic functions f1, f2 of polynomial growth.

• By a Poincaré-Siegel argument and the primitive ele-

ment theorem, the quotient field of holomorphic functions

of polynomial growth is given by R(M 2) = C(f1, f2, g/h),

for some holomorphic functions g, h of polynomial growth.

• The map F = (f1, f2, g, h) : M → C4 defines a

birational equivalence.

• Desingularize the map F and use Ramanujam’s the-

orem.

#
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The above argument is heavily depending on the Ra-

manujam theorem which is only valid in complex two-

dimension. Nevertheless it can used to compactify com-

plete noncompact Kähler manifolds of positive bisectional

curvature and maximal volume growth for all dimensions.

Recently Chau and Tam had extended the above result

to all dimensions by more direct method.

Theorem (Chau-Tam(2005))

Suppose: Kähler manifold Mn, 0 <bisect≤ Const.,

and

(i) V ol(B(x0, r)) ≥ C1r
2n, ∀r ≥ 0.

Then

Mn
biholo.∼= Cn.
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§6 Non-maximal Volume Growth Case
In this section we will consider the uniformization the-

orem without maximal volume growth assumption.

Theorem (To, Duke Math. J. (1991)) Let Mn be

a complete noncompact Kähler manifold of positive

holomorphic bisectional curvature and suppose for some

base point x0 ∈ M that there exist positive C1, C2 and

p such that

(i)’
∫

B(x0,r)

1

(1 + d(x0, x))np
dx ≤ C1 log(r + 2), r > 0,

(ii)’

R(x) ≤ C2

1 + d(x, x0)p
, on Mn,

(iii)

c1(M
n)n =

∫

Mn
Ricn < +∞.

Then Mn is quasi-projective. Moreover, if in addition

the complex dimension n = 2 and the sectional cur-

vature of M 2 is positive, then M 2 is biholomorphic to

C2.
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It is likely that the assumption (iii) is automatically

satisfied for complete Kähler manifolds with positive sec-

tional curvature. At least in the complex two-dimensional

case, there holds the generalized Cohn-Vossen inequality

c2(M
2) =

∫

M2
Θ ≤ χ(R4) < +∞

where Θ is the Gauss-Bonnet-Chern integrand. In view

of Miyaoka-Yau type inequality on the Chern numbers, it

is reasonable to expect getting the finiteness of c1(M
2)2

from that of c2(M
2). Meanwhile in views of Demailly’s

holomorphic Morse inequality and the L2-Riemann-Roch

inequality of Nadel-Tsuji, the assumption (iii) is a natural

condition for a complete Kähler manifold to be a quasi-

projective manifold. The following result shows that the

assumption (iii) alone is sufficient to give an affirmative

answer.

27



Theorem(Chen-Zhu)

Let Mn be a complex n−dimensional complete non-

compact Kähler manifold with bounded and positive

sectional curvature. Suppose

c1(M
n)n =

∫

Mn
Ricn < +∞.

Then Mn is biholomorphic to a quasi-projective vari-

ety, and in case of complex dimension n = 2, M 2 is

biholomorphic to C2.
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